6 best Crossfire and SLI graphics cards on test

Nvidia's GeForce GTS 250 and the ATI Radeon HD 4770 from AMD share a common purpose.

For gaming junkies, you might even say it's a sacred calling. Both aim to deliver the maximum performance in return for the minimum pecunias. Other 3D cards might be faster, but none can match the bang-for-buck ratio achieved by these mass market pixel pumpers.

The funny thing is that the way they go about it couldn't be more different. Take the GTS 250. Contrary to what the branding insinuates, this is not a new mid-range derivative of Nvidia's mighty GT200 GPU, the graphics chip that forms the beating heart of both the GeForce GTX 285 and 295. It's yet another rehash of the trusty old G92 core that began life eons ago in the GeForce 8800 GT.

Since then, it has fought Nvidia's cause in a number of different guises and yet remarkably little has changed. Now as then, the latest version of G92 packs 128 stream processors, the mini-programmable execution cores responsible for calculating funky visual effects in the latest games.

Likewise it still has 64 texture filtering units, 16 pixel outputs and a 256-bit memory bus. In fact, the only significant tweak involves the manufacturing process used to produce G92 dies.

What began life as a 65nm chip has since been given a slight 55nm squeeze. Consequently, each one is physically smaller. And smaller dies make for cheaper chips. All of which means the GTS 250 adds up to a slightly dated enthusiast class GPU sold at a mainstream price. You can now bag a 512MB GTS 250 for well under £100. But what about AMD's Radeon HD 4770?

Well, it's new from the ground up and sports an architecture optimised to give the best possible performance where it really counts for mainstream customers. AMD has therefore decided to focus the chip's resources heavily on shader processing.

With no less than 640 stream processors and a core clockspeed of 750MHz, the 4770 has around 75 per cent of the raw computational power of AMD's fastest single GPU, the Radeon HD 4890. That's a card that typically sells for nearly £200 and is therefore two and half times more expensive than the 4770.

A question of bandwidth

Indeed, the 4770 also matches the 4800 for pixel output with 16 ROPs and comes close in the texture processing department with 32 units, just eight fewer than its bigger brother.

In fact, in terms of floating point processing power – an interesting if somewhat academic measure of a graphics chip's computational grunt – the 4770 even manages to get within about 10 per cent of Nvidia's might GeForce GTX 285, a graphics card that sells for around £300. So, how has AMD pulled this off at such a low price point? By reducing the size of the 4770's die, that's how.

For starters, thanks to the use of 40nm chip production technology the 4770 has the tiniest transistors yet seen in any GPU. But AMD has also made one very significant compromise in architectural terms. The 4770 has a 128-bit memory bus.

That's half the width of the 250's memory bus and one quarter the size of a GeForce GTX 285's. The upside is lower manufacturing costs. The narrower bus requires fewer connections making both the chip packaging and graphics board design simpler and cheaper.

The penalty, of course, is less bandwidth into and out of the GPU. That sounds bad, but AMD knows that at lower resolutions bandwidth is less critical.

And given that the 4770 is a mainstream board, it's not likely to be paired with large, high resolution monitors - in single-card configurations, at least. Instead, the 4770 will typically be driving 20-or 22-inch monitors with 1,680 x 1,050 pixel grids.

You may be wondering what all this has to do with multi-GPU performance. Actually, it's highly relevant for reasons that ultimately involve memory bandwidth. For starters, any multi- GPU setup comes with increased expectations.

What with the multiple cards and the mobo needed to support them, you're looking at a fairly expensive rig. That in turns means you're more likely to be running at higher resolutions.

The mechanics of multi-GPU technology also count. To cut a long story short, the most common multi-GPU rendering method is alternate-frame rendering (AFR) which, as the name suggests, involves the GPUs taking turns drawing full frames.

That requires both cards having a complete copy of the graphics data, which further compounds the problem of data bandwidth. This is precisely where the differences between the Radeon HD 4770 and GeForce GTS 250 are most telling.

As our benchmark results show, a pair of Radeon HD 4770s in dual-GPU CrossFireX configuration have a nasty habit of losing the plot at higher resolutions. Far Cry 2 is the best example, with performance plummeting horribly above 1,680 x 1,050. Yup, it's the 4770's poxy 128-bit memory bus doing the damage.

Making matters worse, early examples of the 4770, including the HIS boards tested here, are limited to 512MB. At really high resolutions and detail settings, that can force the cards to use main system memory to store graphics data which further reduces performance.

By contrast, the GTS 250's enthusiast class origins and 256-bit memory make a much better platform for multi-GPU antics. As the resolutions ramp up, it maintains its composure and performs in a much more linear fashion.

The fact that the Gigabyte and Zotac GTS 250s used for this test have 1GB frame buffers also helps. That's particularly true at the epic 2,560 x 1,600 resolution where data swapping over the PCI-e bus can become a major handicap for 512MB cards.

Contributor

Technology and cars. Increasingly the twain shall meet. Which is handy, because Jeremy (Twitter) is addicted to both. Long-time tech journalist, former editor of iCar magazine and incumbent car guru for T3 magazine, Jeremy reckons in-car technology is about to go thermonuclear. No, not exploding cars. That would be silly. And dangerous. But rather an explosive period of unprecedented innovation. Enjoy the ride.

Latest in GPU
An AMD Radeon RX 9070 XT made by Sapphire on a table with its retail packaging
Bad news PC gamers - it seems AMD's aggressively low price for its Radeon RX 9070 GPU will only be for a limited time
NVIDIA GeForce RTX 50 Series image
Nvidia's 572.70 Game Ready Driver promises a black screen fix - but unless you have an RTX 5070 it's probably best to avoid updating for now
An Nvidia GeForce RTX 5080 resting on an RTX 5090 on a gray crafting mat.
Corsair tells us only one of its prebuilt PCs with an RTX 5000 GPU has suffered from chip-level fault, suggesting it’s as rare as Nvidia claimed
An AMD Radeon RX 9070 XT made by Sapphire on a table with its retail packaging
Last-minute AMD RX 9070 XT stock rumors are making me hopeful for a much better launch than Nvidia’s RTX 5000 GPUs – with just one snag
The Nvidia and AMD logos clashing with lightning bolts around them.
Sure, Nvidia DLSS 4 is incredibly impressive - but AMD's improved upscaling tech could be a real game-changer
An Nvidia GeForce RTX 5070
Nvidia confirms that an RTX 5070 Founders Edition is coming... just not on launch day
Latest in News
Stock photographs of people smiling and looking at laptops in a small business environment.
This web hosting platform elevates your online presence
The Samsung Galaxy S25 Edge on display at Galaxy Unpacked
Exclusive: the Samsung Galaxy S25 Edge will have durability to match its ‘sexy’ form
Metaphor: ReFantazio
Sega was Metacritic's highest-rated publisher of 2024 thanks to the critically acclaimed Metaphor: ReFantazio and Like a Dragon: Infinite Wealth
AirPods Pro Review
Apple has quietly updated its guidance on how to clean your AirPods, and suggests you buy a kit… from Belkin
China
Chinese hackers who targeted key US infrastructure charged by Justice Department
A screen shot of Lady Gaga in her interview with Zane Lowe for Apple Music
Lady Gaga’s Spotify press conference is being live streamed today – here’s where you can watch Spotify’s big step forward in fan inclusion