Why your next CPU could be a GPU

Will your next CPU be a GPU?
With all the big boys wading into the GPGPU war, it may not be that long until we get a taste of what a petaflop really means

Everybody's talking about supercomputing on the desktop – and in particular, whether it will be GPUs that achieve that goal. We think that general-purpose computation on GPUs (an idea known as the GPGPU) might be the most important computing trend over the next 10 years.

As claims go, it's a biggie. But if you want proof of the industry's faith in the new concept, just take a look at the companies that want a slice of the GPGPU pie: Nvidia, AMD, Intel, Microsoft, IBM, Apple and Toshiba all want in. And it's not just speculation that's leading to such big interest: GPGPU systems are already outperforming CPU-only clusters in fields as diverse as molecular dynamics, ray tracing, medical imaging and sequence matching.

The combination of parallel CPU and GPU processing used to achieve these results is often dubbed 'heterogeneous computing'. The GPGPU concept enables the GPU to moonlight as a versatile co-processor. As Nvidia's David Luebke has suggested, computers are no longer getting faster; the move to multicore processors means that they're actually getting wider.

That's the idea that GPGPU computing cashes in on. By intelligently offloading data intensive tasks from the CPU to other processor cores (such as those in a graphics card), developers achieve improved application performance through parallelism.

The GPGPU is hardly a new idea, however. According to website www.gpgpu.org, GPU technology has been used for number crunching since 1978, when Ikonas developed a programmable raster display system for cockpit instrumentation.

From GPU to GPGPU

Modern GPUs make ideal co-processors. Not only are they cheap, they're also blisteringly fast, thanks to the presence of multiple processor cores. Most importantly, these multiple cores are programmable. While CPUs are designed to process threads sequentially, GPUs are designed to burn through data in parallel.

The Nvidia GeForce GTX 280, for example, is built for speed. As a gaming component, it's capable of delivering smooth high-definition visuals with complex lighting effects, textures and realtime physics. Just take a look at Far Cry 2 in 1,920 x 1,200 pixels. With 1.4 billion transistors, the GeForce GTX 280 commands 240 programmable shader cores that can provide 993 gigalops of processing power.

AMD's graphics technology is equally potent. Its 4800 Series Radeon HD cards feature 800 programmable cores and GDDR5 memory to deliver 1.2 teralops of processing power. "Strict pipelining of GPU programs enables efficient access to data," says Shankar Krishnan at AT&T's Research Labs. "This obviates the need for the extensive cache architectures needed on traditional CPUs and allows for a much higher density of computational units."

Of course, if you're not playing Far Cry 2 or Fallout 3 then all this processing potential is just sitting about twiddling its thumbs. GPGPUs will allow us to see what will happen if other applications are able to make use of the processors in a graphics card.

Stream processing

This is why Nvidia and AMD are keen to harness the GPGPU potential of their graphics hardware. Nvidia's Tesla Personal Supercomputer, for example, combines a traditional quad-core workstation CPU with three or four Tesla C1060 processors.

A C1060 is effectively a GeForce GTX 280 with 4GB of GDDR3 memory and no video-out. Each C1060 is capable of 933 gigalops of single-precision floating point performance, so Nvidia's top-of-the range four-GPU S1070 system packs up to 4.14 teralops of processing power in each rack. The Tokyo Institute of Technology recently bought 170 of them to give its Tsubame supercomputer some extra kick.

GPUs make ideal number crunchers because they're designed to work with 'streams' of data and apply preprogrammed operations to each part. GPUs are at their best working with large datasets that require the same computation. Calgary-based company OpenGeoSolutions uses Nvidia's Tesla hardware to improve its seismic modelling via a technique called spectral decomposition. The process involves analysing low level electromagnetic frequencies (caused by variances in rock mass) to build a stratigraphic view of the earth's geology.

Latest in GPU
An AMD Radeon RX 9070 XT made by Sapphire on a table with its retail packaging
AMD’s secret weapon against Nvidia seems to be stock – way more RX 9070 GPUs are rumored to be hitting shelves than RTX 5000 models
NVIDIA
Nvidia's new Game Ready Driver repeats an annoying black screen issue from previous versions - it needs fixing ASAP
Nvidia logo
Nvidia RTX 5060 Ti could be delayed to mid-April and RTX 5060 to mid-May – is AMD starting to look like a clear winner in the battle of Blackwell vs RDNA 4 GPUs?
An Nvidia GeForce RTX 5080 leaning against its retail packaging with the RTX 5080 logo visible
Nvidia RTX 5000 series GPUs are finally getting price drops – but there's a catch
AMD RX 9070 GPU models
We won't be seeing any Radeon RX 9000 series GPUs from MSI - AMD prioritizes other board partners instead
PowerColor Red Devil AMD RX 9070 XT graphics card shown side-on
Your next GPU could be from AMD, not Nvidia, if Team Red’s success with PC gamers continues
Latest in News
Quordle on a smartphone held in a hand
Quordle hints and answers for Sunday, March 23 (game #1154)
NYT Strands homescreen on a mobile phone screen, on a light blue background
NYT Strands hints and answers for Sunday, March 23 (game #385)
NYT Connections homescreen on a phone, on a purple background
NYT Connections hints and answers for Sunday, March 23 (game #651)
Google Pixel 9 Pro Fold main display opened
Apple is rumored to be prioritizing battery life on the foldable iPhone – which could also feature a liquid metal hinge for added durability
Google Pixel 9
The Google Pixel 10 just showed up in Android code – and may come with a useful speed boost
L-mount alliance
Sirui joins L-Mount Alliance to deliver its superb budget lenses for Leica, DJI, Sigma and Panasonic cameras