Fingerprint authentication is surprisingly easy to bypass - researchers find critical vulnerabilities in Windows Hello

Representational image depecting cybersecurity protection
(Image credit: Shutterstock)

The fingerprint-enabled security systems on many top business laptops around today may not be as ironclad as first thought, new research has claimed.

The Microsoft Offensive Research and Security Engineering (MORSE) recently handed over a set research targets to Blackwing Intelligence, tasking it to crack their security.

The research targets were three Windows laptops with the top three fingerprint sensors on the market, used to identify and grant access to users through Windows Hello. Not only did the firm manage to crack all three laptops, they did so in some surprising and intuitive ways.

Windows Hello flaws

Blackwing Intelligence was given three laptops; a Dell Inspiron 15; a Lenovo ThinkPad T14; and a Microsoft Surface Pro Type Cover with Fingerprint ID.

In the three months Blackwing had, the firm managed to crack all three laptops using a variety of increasingly inventive methods, before reporting the vulnerabilities back to MORSE.

The Inspiron 15 was identified as the particularly vulnerable target due to a number of factors including poor coding quality, clear text communication, and good USB and Linux support.

By using a Raspberry Pi 4 (RP4) as a man-in-the-middle (MitM) device, they found they were able to disconnect the fingerprint sensor and then use the RP4 to enumerate fingerprints in the Windows database, enrol their own fingerprints into a Linux database (listing them as a valid Windows user in the process), and then divert the fingerprint sensor to the Linux database which then pulled the authenticated fingerprint and granted access.

In its blog, BlackWing concluded that, "Biometric authentication can be super useful to allow users to conveniently log in.

"Microsoft did a good job designing Secure Device Connection Protocol (SDCP) to provide a secure channel between the host and biometric devices, but unfortunately device manufacturers seem to misunderstand some of the objectives," it noted.

"Additionally, SDCP only covers a very narrow scope of a typical device’s operation, while most devices have a sizable attack surface exposed that is not covered by SDCP at all.

"Finally, we found that SDCP wasn’t even enabled on two out of three of the devices we targeted."

More from TechRadar Pro

Benedict Collins
Staff Writer (Security)

Benedict has been writing about security issues for over 7 years, first focusing on geopolitics and international relations while at the University of Buckingham. During this time he studied BA Politics with Journalism, for which he received a second-class honours (upper division), then continuing his studies at a postgraduate level, achieving a distinction in MA Security, Intelligence and Diplomacy. Upon joining TechRadar Pro as a Staff Writer, Benedict transitioned his focus towards cybersecurity, exploring state-sponsored threat actors, malware, social engineering, and national security. Benedict is also an expert on B2B security products, including firewalls, antivirus, endpoint security, and password management.