How does AI play a part in a world striving for net-zero?

A person holding out their hand with a digital AI symbol.
(Image credit: Shutterstock / LookerStudio)

Artificial intelligence (AI) holds the potential to solve some of the thorniest problems facing humanity, including the challenges of climate change. But at the same time, the technology - in particular, generative AI - uses a vast amount of computational power, and consequently a huge amount of energy. This is a problem, and one which is only going to grow. 

The amount of computing power required for cutting-edge AI models is doubling every five or six months, and it’s reasonable to imagine that it will continue to increase as demand for the technology booms. Data centers already consume up to 1.5% of the world’s electricity supply, and energy consumption is responsible for around 75% of man-made greenhouse gas emissions in the EU.

Recent research by Gartner predicts that, “by 2030, AI could help reduce global GHG emissions by 5% to 10%”. However, by the same year, Gartner predicts that “AI could consume up to 3.5% of the world’s electricity”.

The tech industry is facing a clear challenge: to find solutions to curb the energy demands of AI, and thus unlock the technology’s full potential to help the human race.

How AI consumes power

The power required by AI is due to two factors: energy is consumed when models are trained, and during inference, where live data is run through a trained AI model to solve tasks. Research published in the journal Joule suggests that inference can account for at least 60% of the energy consumption of generative AI, and that adding AI capabilities to web searches can multiply energy demands tenfold. There also tends to be an increased volume of queries when engaging with a generative model compared to a search engine, due to the back-and-forth dialogue as users try to achieve their desired result.

Noam Rosen

EMEA Director, HPC & AI at Lenovo Infrastructure Solutions Group (ISG).

As new use cases for generative AI emerge around text, images and video, there will also be an increase in large models being trained, retrained and fine-tuned on a daily basis. The recent class of generative AI models require more than a 200-fold increase in computing power to train compared to previous generations. Every new generation of models requires more computing power for inference, and more energy to train. It’s a constant cycle that continually adds demand onto the required infrastructure.

In terms of hardware, the graphics processing units (GPUs) used for AI can expend many times the energy of a traditional CPU system. Today’s GPU’s can consume up to 700 watts, and an average installation takes eight GPUs per server. This means a server could be consuming nearly six kilowatts, compared to one kilowatt for the traditional two-socket server unit enterprises use for virtualization. So, the big question is, how can we make this more sustainable?

Finding answers

The first step is to understand that sustainability is a journey: there is no singular action that can ‘fix’ it when it comes to AI. But small steps can make a big difference. The computing industry is being sent a loud, clear message to create better products that use fewer resources. This call is coming from consumers and investors, but also increasingly from governments. Being energy efficient will in future be a legal requirement for organizations in the AI space. Recent amendments to the EU AI Act will mandate that operators adopt state-of-the-art methods to cut energy consumption and enhance the efficiency of their AI platforms.

This can be achieved in three specific technical ways: first in the chips used to generate the computational power, second in the computers built for those chips, and third in the data center. Sustainability is increasingly becoming a competitive differentiator both for chip makers and PC makers, and will become more so as companies make the effort to achieve ESG goals. In the coming decades, new advances such as analogue chips could offer an energy-efficient alternative, perfect for neural networks, according to research in the journal Nature.

In the data center, older air-cooling technologies are already struggling to deal with the high energy demands of AI, and customers are turning to liquid cooling to minimize energy consumption. By efficiently transferring the heat generated by generative AI into water, customers can save up to 30-40% on electricity. Data centers driven by renewable energy sources will be key to reducing AI’s carbon footprint. ‘As a service’ approaches to AI technology can also help to minimize waste and ensure that organizations are using the newest, most sustainable hardware, without up-front capital outlay.

AI for good

There is a trade-off around AI and its energy demands that needs to be discussed. Some are using AI for the benefit of humankind, by improving medicine or tackling climate change, for example, while others are using it to generate entertainment. This raises questions around whether we should view those different energy demands differently.

It is certain that AI has enormous potential to do good, already having an impact in many areas. There are dozens of examples of how AI holds the potential to mitigate the impacts of climate change, with the UN pointing out that it is not only helping to better forecast and understand extreme weather, but also offering direct help to communities impacted by this.

In addition, AI can offer new understanding of the world around us, which could in turn help to curb greenhouse gas emissions. In smart cities, it has potential to minimize emissions by saving minutes or hours of heating and air conditioning at city scale, by learning people’s habits and turning heating or air con down gradually in the hour before they leave their homes. The technology can also regulate traffic across a city, so that vehicles drive efficiently and traffic jams are prevented. Norwegian start-up Oceanbox.io is harnessing predictive AI on its mission to understand the depths of the ocean, forecasting the movement of currents which can help to combat the spread of pollution and help vessels to reduce their petrol use.

AI’s contribution to a net-zero world

There is no question that AI uses a lot of power, but we can tackle this step by step - by using warm water cooling instead of air cooling, harnessing renewable energy sources to drive data centers, and through innovations in chip and computer design.

In so many ways, AI also can also offer positives for humanity and become a powerful force to drive the world toward the UN’s Sustainable Development Goals. It has the potential to help us to better understand the causes of climate change and tackle it, reduce inequality, and preserve our oceans and forests. Used responsibly, AI can go hand in hand with sustainability objectives. As the world comes together to drive towards net-zero, AI will increasingly play an important part.

We've listed the best AI website builders.

This article was produced as part of TechRadarPro's Expert Insights channel where we feature the best and brightest minds in the technology industry today. The views expressed here are those of the author and are not necessarily those of TechRadarPro or Future plc. If you are interested in contributing find out more here: https://www.techradar.com/news/submit-your-story-to-techradar-pro

Noam Rosen is the EMEA Director, HPC & AI at Lenovo Infrastructure Solutions Group (ISG).

Read more
Data center racks with cables and servers
What data centers should consider to establish more sustainable operations
A person holding out their hand with a digital AI symbol.
Satellites, AI and blockchain: the unsung heroes in sustainability innovation
Racks of servers inside a data center.
Businesses are slowly waking up to the environmental effects of Gen AI
Ai tech, businessman show virtual graphic Global Internet connect Chatgpt Chat with AI, Artificial Intelligence.
ChatGPT vs. DeepSeek: which AI model Is more sustainable?
Half man, half AI.
AI energy efficiency monitoring ranks low among enterprise users, survey by inference hardware specialists finds
Cloud computing graphics.
4 key trends redefining the IT landscape
Latest in Pro
Code Skull
Interpol operation arrests 300 suspects linked to African cybercrime rings
Insecure network with several red platforms connected through glowing data lines and a black hat hacker symbol
Multiple H3C Magic routers hit by critical severity remote command injection, with no fix in sight
Code Skull
This dangerous new ransomware is hitting Windows, ARM, ESXi systems
ai quantization
Shadow AI: the hidden risk of operational chaos
An abstract image of a lock against a digital background, denoting cybersecurity.
Critical security flaw in Next.js could spell big trouble for JavaScript users
Bambu Lab H2D Vs X1C
I've been reviewing the hotly anticipated Bambu Lab H2D for a month, and it's the most versatile machine I've ever used
Latest in News
Zotac Gaming RTX 5090 Graphics Card
Nvidia Blackwell stock woes are compounded by price hikes as more RTX 5090 GPUs soar in pricing, and I’m sick and tired of it all at this point
An Apple Music pink/pixellated poster advertising DJ with Apple Music
DJ with Apple Music lands, allowing subscribers to build and mix DJ sets directly from its +100 million-song catalog
The Meta Quest 3 and controllers on their charging station which is itself on a wooden desk next to a lamp
Forget Android XR, I've got my eyes on Vivo's new Meta Quest 3 competitor as it could be the most important VR headset of 2025
Samsung Galaxy S25 from the front
The Now Bar on Samsung One UI 7 is about to get a lot more useful – and could soon match Live Activities on iOS
Marvel Rivals
Marvel Rivals will get two new hero skins for Moon Knight and Black Panther this week meaning I'll now need to farm even more Units
Nvidia app
Tired of manually optimizing your games? Nvidia's new G-Assist could save you time