Top tips for businesses struggling to integrate AI

A digital face in profile against a digital background.
(Image credit: Shutterstock / Ryzhi)

In today's fast-paced business landscape, the integration of Artificial Intelligence (AI) and Machine Learning (ML) is no longer a mere luxury but a strategic necessity. And in particular, the increase in popularity of transformative technologies like ChatGPT and other Generative AI models has made "AI" the undisputed buzzword of 2023, earning the crown for word of the year by Collins Dictionary.


While the trend of ChatGPT highlights applications of Generative AI, it's important to recognize the broader category of AI, even if some aspects may seem less exhilarating. The broader category of AI plays a crucial role in shaping the future of technology. The potential benefits are vast, encompassing enhanced decision-making, improved data management, and faster response times. As organizations strive to harness the power of AI, the road ahead is rife with challenges and opportunities.

What is Automated Machine Learning (ML)?

Automated machine learning, a subset of AI, has emerged as a transformative tool for organisations looking to leverage data-driven insights. By configuring computer programs to discern patterns and relationships within data, automated machine learning empowers analysts to make predictions based on historical data. The benefit of this is the ability to save time that would otherwise be spent on data cleaning, allowing analysts to focus on higher-level analysis and interpretation.

As these models evolve and become increasingly adept at identifying critical factors for predicting outcomes, they boost the precision of predictions. They can uncover patterns and trends that might be missed under human observation, therefore empowering decision-makers to make informed choices.

Ben Schein

Senior Vice President of Product at Domo.

Benefits of AI and Machine Learning for organizations

The adoption of AI and ML technologies within businesses has already shown significant benefits and the advantages are clear; automated machine learning enhances decision-making, predicts trends, provides easier access to information, detects anomalies, and accelerates response times. These enhancements contribute towards reducing operational costs, increasing efficiency, raising revenue, and enabling data-driven decision-making.

Although managing big data and analytics in today's digital age presents a formidable challenge, impacting areas such as customer insights and IT efficiency, AI and ML models offer a solution by analyzing data in real-time, detecting patterns and anomalies, and presenting findings in an easily understandable manner.

What are the challenges of AI and Machine Learning for Businesses?

While the promises of AI and automated machine learning are substantial, it is vital to acknowledge the challenges that businesses may find on this journey. Even if the entire organization is aware of a specific problem, not all employees will be affected or respond the same. Different business units and departments often have unique initiatives and processes, which must be considered in the integration process.

Implementing automated machine learning and AI can be a time-consuming and resource-intensive process, particularly in the initial stages when the organisation is adapting to these new models. Every AI model carries a certain degree of risk. Organisations must consider the possibility of incorrect outcomes when making business decisions about which data to incorporate. These models aim to mimic human cognitive processes and can make errors.

Moreover, AI models are in a constant state of evolution, making it challenging to predict their longevity and how they may change over time. As AI technology becomes more widely used, organizations will likely begin sharing data with others to improve accuracy and expedite outcome predictions, leading to more streamlined processes.

The future of AI integration

As the world of technology and AI continues to evolve, it is expected to have a profound impact on the way businesses operate in the future. However, organizations must prioritize education about the integration and deployment process to fully harness the power of AI and BI in a way that aligns with their unique business needs. This means not only understanding traditional AI and machine learning approaches but also staying informed about emerging technologies such as Generative AI.

Achieving success in this requires a clear vision, a well-defined strategy, and a steadfast commitment to ethical and effective governance. In this era of data-driven decision-making, organizations that successfully navigate the roadblocks to AI integration, including the complexities of Generative AI, will gain a competitive edge in the market. Balancing the power of AI with effective governance can ensure that AI serves the best interests of organizations and society as a whole.

Integrating AI and automated machine learning is not without its challenges, but the benefits are undeniable. With the right approach, organizations can harness the full potential of these transformative technologies and secure a brighter future in an increasingly data-driven world.

We've featured the best business intelligence.

This article was produced as part of TechRadarPro's Expert Insights channel where we feature the best and brightest minds in the technology industry today. The views expressed here are those of the author and are not necessarily those of TechRadarPro or Future plc. If you are interested in contributing find out more here: https://www.techradar.com/news/submit-your-story-to-techradar-pro

TOPICS

Ben Schein is Senior Vice President of Product at Domo.

Read more
A person holding out their hand with a digital AI symbol.
The decision-maker's playbook: integrating Generative AI for optimal results
An AI face in profile against a digital background.
Unlocking AI’s Transformative Potential for Competitive Edge
A person holding out their hand with a digital AI symbol.
Understanding the difference between assisted intelligence and artificial intelligence
Half man, half AI.
Capitalizing on AIOps: streamlining and enhancing business performance
A hand reaching out to touch a futuristic rendering of an AI processor.
Ensuring SMBs don’t get left behind in the Gen AI wave
A hand reaching out to touch a futuristic rendering of an AI processor.
Unlocking AI’s true potential: the power of a robust data foundation
Latest in Pro
A trough sensor at Overbury farm
“It's wildlife working for you” - how Agri-Tech can help revolutionize British farming as we know it
Epson EcoTank ET-4850 next to a TechRadar badge that reads Big Savings
I found the best printer deal you won't see in the Amazon Spring Sale and it's got a massive $150 saving
NVIDIA RTX PRO 6000 Blackwell Server Edition
Nvidia's most expensive Blackwell card gets massive price cut but it is not the RTX 5090
Microsoft Copiot Studio deep reasoning and agent flows
Microsoft reveals OpenAI-powered Copilot AI agents to bosot your work research and data analysis
Group of people meeting
Inflexible work policies are pushing tech workers to quit
Data leak
Top home hardware firm data leak could see millions of customers affected
Latest in News
Buzz Lightyear Space Ranger Spin Rennovations
Disney’s giving a classic Buzz Lightyear ride a tech overhaul – here's everything you need to know
Hisense U8 series TV on wall in living room
Hisense announces 2025 mini-LED TV lineup, with screen sizes up to 100 inches – and a surprising smart TV switch
Nintendo Music teaser art
Nintendo Music expands its library with songs from Kirby and the Forgotten Land and Tetris
Opera AI Tabs
Opera's new AI feature brings order to your browser tab chaos
An image of Pro-Ject's Flatten it closed and opened
Pro-Ject’s new vinyl flattener will fix any warped LPs you inadvertently buy on Record Store Day
The iPhone 16 Pro on a grey background
iPhone 17 Pro tipped to get 8K video recording – but I want these 3 video features instead